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Theory of Strong Intrinsic Mixing of Magnetic Particle Suspensions  

in Vortex Magnetic Fields 

 
Motivation—Although there are countless 
methods of fluid mixing, none of these has 
proven successful on the microscale.  Even 
simple mixing cells have proven unsuccessful 
because it is difficult to create flow rates large 
enough to initiate turbulence.  We have 
discovered that strong magnetic mixing occurs 
when magnetic particle suspensions are 
subjected to a “vortex” magnetic field - a 
rotating field in combination with a dc field 
normal to the rotating field plane, Fig. 1.   

by J. E. Martin 

 
Experimental work in our laboratory shows that 
vortex field mixing has surprising properties.  
The mixing torque is independent of the field 
frequency and liquid viscosity, and proportional 
to the field squared.  Mixing with a magnetic 
stir bar is quite different: the torque is 
proportional to the field frequency and liquid 
viscosity, and independent of the field strength.  
Of course, in each case there are stagnation 
conditions where mixing does not occur, such as 
an inadequate field, or a field frequency that is 
too high.   
 
Our challenge is to develop a microscopic 
model of vortex field mixing that agrees with 
experimental observations, and predicts the 
dependence of the torque on particle size.  If the 
torque is independent of the particle size, then a 
new technology can be scaled to any size. 
 
Accomplishment—From the details of our 
experimental observations we deduced that the 
mixing in vortex fields is due to the formation 
of particle chains that have a precessional 
motion.  These chains are held together by the 
dipolar interactions between particles.  The field 
creates a torque on a chain because it lags 
behind the field. A Brownian Dynamics code 
we developed confirms the existence of these 

chains. 
 
Our theoretical analysis, summarized in Fig. 2, 
shows that the orbits of these chains lie on the 
surface of a cone.  The chain cone angle θ is the 
vortex field angle for short chains, but becomes 
progressively smaller for longer chains, which 
lag the field by a greater phase angle φ.  If 
chains grow without limit, then eventually the 
cone angle will vanish, and mixing will not 
occur.   
 
Whether or not this mixing catastrophe occurs is 
dependent on the vortex field angle.  For vortex 
field angles greater than 45° chains cannot grow 
without limit because they become unstable or 
metastable.  These instabilities, shown Fig. 2, 
are associated with the competition between the 
dipolar and hydrodynamic torque, as well as the 
fact that the radial dipolar interaction between 
enchained particles can become repulsive for 
large chain phase lags.  We have confirmed 
these instabilities with single-chain simulations. 
The overall physical picture is one in which 
volatile chains grow to their stability limit, 
regardless of field frequency, strength, or liquid 
viscosity.  This theory accounts for all of the 
experimental observations, and predicts that the 
mixing torque is independent of the particle 
size.  
  
Significance—Mixing in a vortex magnetic 
field is a very simple and powerful method of 
mixing on the microscale, such as in irregular 
microfluidic devices.  The mixing torque is 
independent of particle size, and the mixing is 
uniform throughout even complex volumes.  
This quantitative theory identifies the factors 
that optimize torque, and gives quantitative 
predictions for any given conditions. 
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Figure 1.  The field h rotates around the z axis at a vortex (or cone) angle θf.  The chain, indicated 
by the vector r, follows the field at some phase lag angle φm, and at cone angle φm < θf. 

 
Figure 2.  A polar plot of the stationary orbits of chains following a vortex field.  (The radial 
distance is the polar angle θ and the phase lag φμ is the standard polar azimuthal angle.)  This polar 
plot has a direct physical interpretation:  Each point on the locus of stationary orbits can be thought 
of as the point at which the chain vector intersects an x-y plane with z=1 at the instant at which the 
applied field is in the y-z plane.  In yellow, orange and red are the various instabilities that can occur. 
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